

CPES Power Management Consortium (PMC) Review Meeting

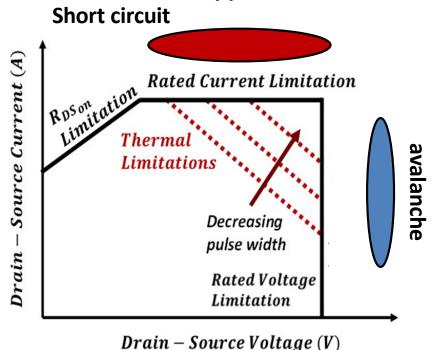
Robustness of Vertical GaN Fin-JFETs: Update on Avalanche and Short Circuit Tests

Ruizhe Zhang, Jingcun Liu, Qiang Li, Yuhao Zhang Subhash Pidaparthi, Cliff Drowley

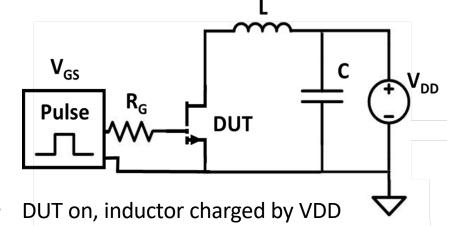
Email: {rzzhang, yhzhang}@vt.edu

cliff@nexgenpowersystems.com

This is an excerpt of the full slides; for full slides, please contact Vikas Dhurka Vikas. Dhurka@nexgenpowersystems.com


Outline

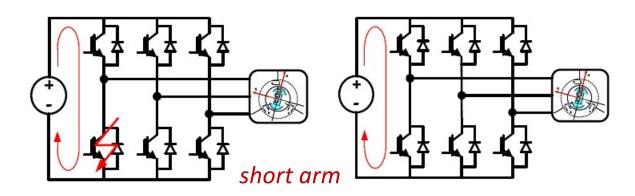
- Introduction
 - Robustness requirements: avalanche and short circuit
 - GaN fin-channel junction field-effect transistor (Fin-JFET)
- Avalanche test
 - Single-event test
 - Repetitive test
- Short circuit test
 - Single-event test
 - Benchmark
- Summary & next steps

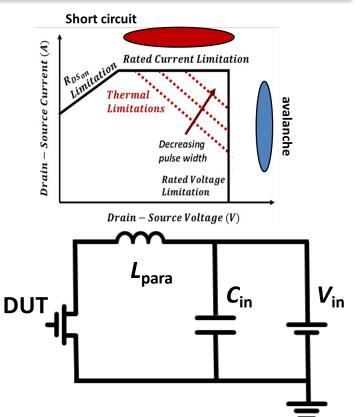


Avalanche Robustness

Avalanche (surge-energy) and short circuit robustness are desired and required in power applications such as electric vehicle, motor drives, etc.

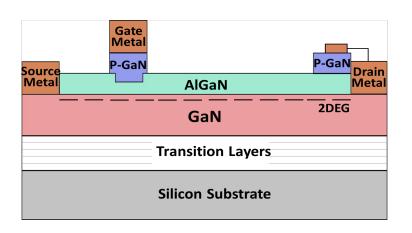
 Avalanche robustness is characterized by unclamped inductive switching (UIS) circuit

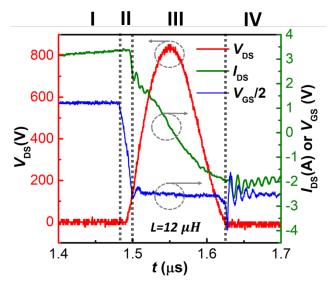



- Inductor current reaches desired value, DUT off
- Energy stored in L goes through off-state DUT
- Power MOSFETs: dissipate energy via avalanche process, E_{AVA} acts as critical parameter

Short Circuit Robustness

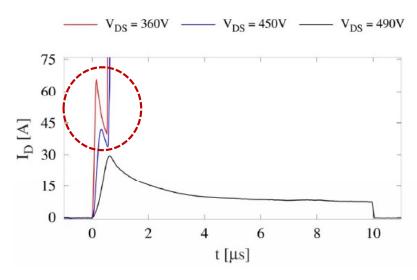
- Different types of Short Circuit event in application
 - Hard switching fault (HSF, SC type I): $V_{DS} = V_{BUS}$
 - Fault under load (FUL): device ON, V_{DS} low
 - Type III: 3rd-quad, reverse ON
- HSF is most harsh, and most commonly used.


• General requirement: 10 μs short circuit withstanding time (t_{SC}) at bus voltage (V_{BUS})

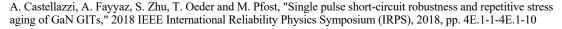

Z. Xu and F. Wang, "Experimental investigation of Si IGBT short circuit capability at 200°C," 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2012, pp. 162-168

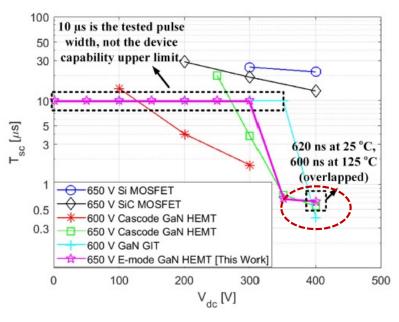
Challenge of GaN HEMT: Lack of Avalanche Capability

• No p-n junction connected to electrodes: no avalanche mechanism


- GaN HEMTs transfer the energy through capacitive charging
 - Failure determined by transient breakdown voltage
 - Can withstand surge-energy in tens of μJ , much smaller than MOSFETs (in mJ)

R. Zhang, J. P. Kozak, M. Xiao, J. Liu and Y. Zhang, "Surge-Energy and Overvoltage Ruggedness of P-Gate GaN HEMTs," in IEEE Transactions on Power Electronics, vol. 35, no. 12, pp. 13409-13419, Dec. 2020



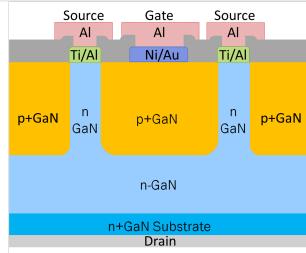

Challenge of GaN HEMT: Low Short Circuit Robustness

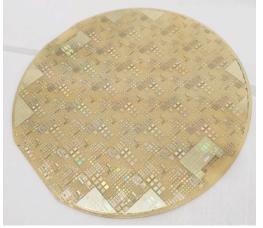
Reported $t_{\rm SC}$ of all types of commercial 650 V GaN HEMTs is below 1 μs at 400 V $V_{\rm BUS}$

(490 V test was done by larger R_G and higher L)

H. Li et al., "Robustness of 650-V Enhancement-Mode GaN HEMTs Under Various Short-Circuit Conditions," in IEEE Transactions on Industry Applications, vol. 55, no. 2, pp. 1807-1816, March-April 2019

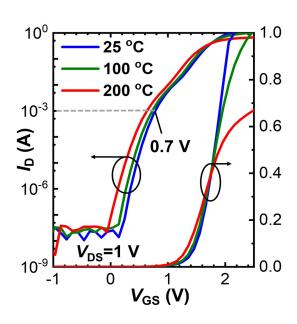
The short circuit robustness concern becomes a major roadblock for GaN penetrating in EV powertrains

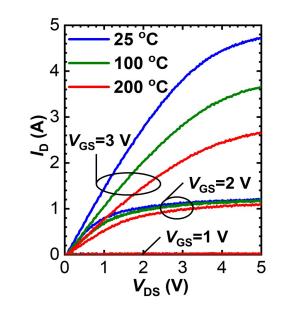


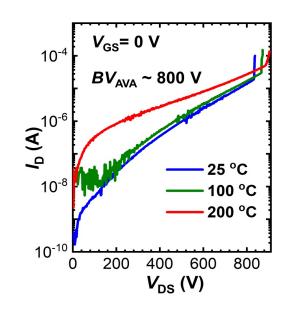

GaN Fin-JEFT Fabrication

- NexGen's normally off Vertical JFET design
- 1 μm deep nGaN fin (source)
- Gate on pGaN (gate)
- Ohmic back contact (drain)
- 650-700 V rated
- 0.1 mm² active region
- Epi & fab processing in NexGen's facility (NY)
- 4" bulk Si doped n+GaN substrates
- TO-247-4L package

J. Liu et al., "1.2-kV Vertical GaN Fin-JFETs: High-Temperature Characteristics and Avalanche Capability," in IEEE Transactions on Electron Devices, vol. 68, no. 4, pp. 2025-2032, April 2021


J. Liu et al., "1.2 kV Vertical GaN Fin JFETs with Robust Avalanche and Fast Switching Capabilities," 2020 IEEE International Electron Devices Meeting (IEDM), 2020, pp. 23.2.1-23.2.4

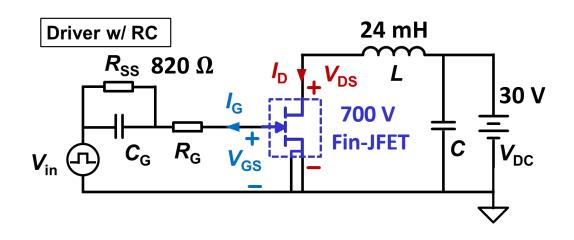


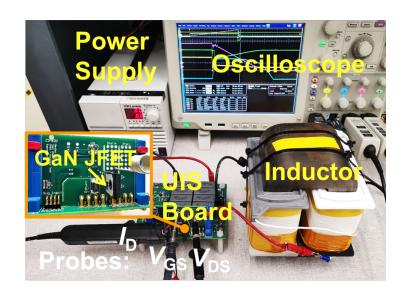

GaN Fin-JEFT Characterization

E-mode operation, 0.7 V $V_{\rm th}$

~ 5 A saturation current

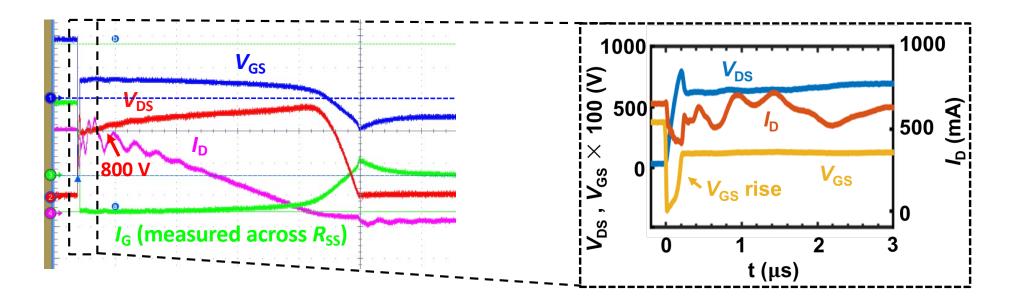
Non destructive avalanche ~ 800 V


Outline


- Introduction
 - Robustness requirements: avalanche and short circuit
 - GaN fin-channel junction field-effect transistor (Fin-JFET)
- Avalanche test
 - Single-event test
 - Repetitive test
- Short circuit test
 - Single-event test
 - Benchmark
- Summary & next steps

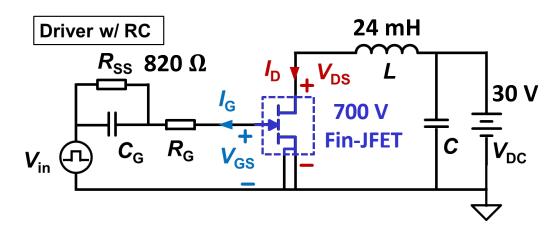
Avalanche Test Setup

UIS circuit used for the avalanche test



P-N junction at gate, RC gate driving circuit used

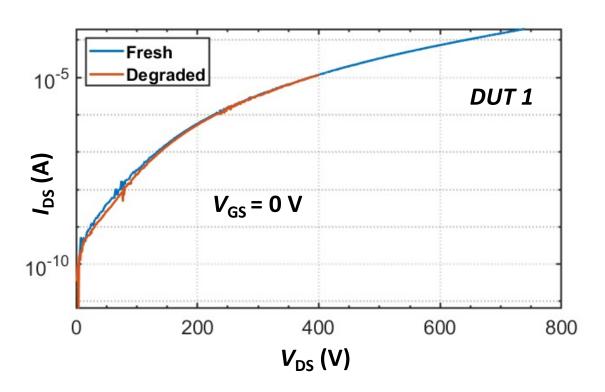
- Enables fast switching
- Suppress quiescent gate current


Typical Avalanche Test Waveforms

- Avalanche breakdown with a positive temperature coefficient
- Energy dissipated via internal avalanche
- V_{GS} was lift when entering avalanche breakdown

Repetitive Avalanche Test Setup

Avalanche through the Fin channel


3 s interval \sim 7 mJ E_{AVA} each cycle (70% critical E_{AVA}), no temperature build up

All waveforms are recorded during the test

Failure Analysis: Final Failure

Device measured after completely failure (cyc #3705) GS are short, only I_{DSS} was characterized

I_{DSS} shows almost no changeSuggesting the failurebetween Gate and Source"Failed open"

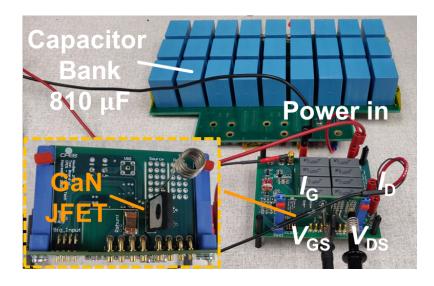
GaN Fin-JFET Avalanche Robustness Benchmark

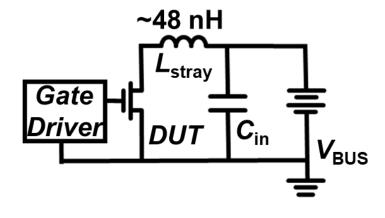
V _{GS} (V)	Max Breakdown Voltage (V)		Dissipated Energy (mJ)		
	T = 25 °C	T = 100 °C	T = 25 °C	$T = 100 ^{\circ}C$	
-10	404	401	548	542	
-12	562	568	569	570	
-14	729	750	595	593	
-16	925	942	607	600	
-18	1076	1134	606	589	
-20	1244	1275	585	621	

Parameters	SiC JFET	NexGen GaN FinFET	
Avalanche Voltage (V)	1200	800	
Active Area (mm²)	7	0.1	
Testing condition	25 s, repetitive	3 s, repetitive	
Critical E _{AVA} (mJ)	621	7~10	
Normalized E _{AVA} (mJ/mm²)	88.7	100.0	

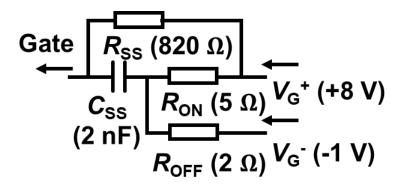
B. N. Pushpakaran et al., "High Temperature Unclamped Inductive Switching Mode Evaluation of SiC JFET," in IEEE Electron Device Letters, vol. 34, no. 4, pp. 526-528, April 2013

GaN Fin-JFET shows comparable E_{AVA} to the reported SiC JFET

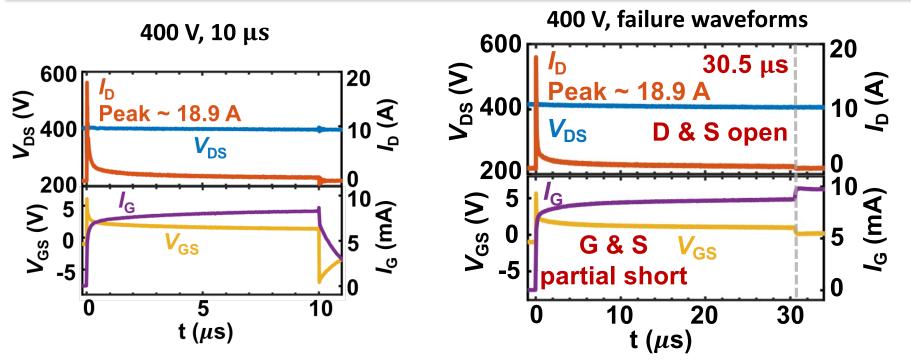



Outline

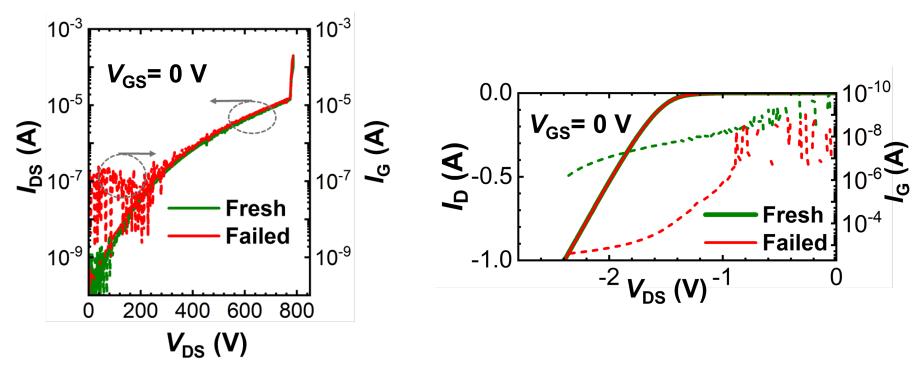
- Introduction
 - Robustness requirements: avalanche and short circuit
 - GaN fin-channel junction field-effect transistor (Fin-JFET)
- Avalanche test
 - Single-event test
 - Repetitive test
- Short circuit test
 - Single-event test
 - Benchmark
- Summary & next steps



Short Circuit Test Setup



- Identical driving circuit to switching application
- No load inductor (~ 48 nH PCB parasitic)
- External capacitor bank (810 μF) for stable voltage
- V_{GS} , V_{DS} , I_{DS} , I_{G} (across R_{SS}) were measured


Safe Withstanding and Failure Waveforms

- A rapid increase in I_D , reaches peak in \sim 20 ns
- A decrease in V_{GS} due to the rise in I_{G} increases the voltage drop across R_{SS}
- DUT fails in 30.5 μ s at 400 V V_{BUS}
- No change in V_{DS} , V_{GS} drops to 0, indicating a D-S open & G-S short failure nature

Failure Characterization & TCAD Simulation

- After failure, the DUT retains avalanche capability
- No change in reverse conduction current, while an increase in gate leakage observed
- Failure solely located between gate and source

GaN Fin-JFET Short Circuit Robustness Benchmark

Device	Type & reference	Volt. Rate (V)	Specific Ron (mΩ· cm2)	V _{bus}	t _{SC} (μs)	E _{SC} ^{a)} (J/cm ²)	Fail	
Vertical GaN Fin-JFET (This work)		700	0.7	400	30.5	7.5	open	
GaN HEMTs	Comm. [1]	600-650	N/A	400	0.62	N/A	short	
(p-gate, GIT,	R&D [2]	650	N/A ^{d)}	400	3	N/A	N/A	
cascode)	R&D [3]	650	$19~\Omega {\cdot} mm^{f)}$	400	4-10	N/A	N/A	
SiC/Si JFET cascode [4]		650	1.05	400	10	N/A	N/A	
SIC MOSFET	Comm. [5]	650	N/A	400	13	N/A	open	
	R&D [6]	650	7.2	400	8.4	6.0	N/A	
Si CoolMOS	Comm. [6]	650	10	400	19	6.7	N/A	

^[1] H. Li et al., IEEE Trans. Ind. Appl., vol. 55, no. 2, pp. 1807, Mar. 2019.

- GaN Fin-JFET shows the longest t_{sc} among 600-700 V rated unipolar transistors
- The failure-to-open nature is highly desirable in applications

^[2] D. Bisi et al., in 2021 IEEE APEC, pp. 370, Jun. 2021

^[3] I. Hwang et al., IEEE Electron Device Lett., early access online, 2021.

^[4] A. Bhalla et al., in 2019 ISPSD, pp. 191, May. 2019.

^[5] N. Badawi et al., in IEEE ECCE, Sept. 2016. [6] A. Agarwal et al., IEEE Trans. Power Electron., vol. 36, no. 3, pp. 3335, Mar. 2021.

Summary

Summary

- A unique "avalanche through fin-channel" phenomena was identified in GaN Fin-JFET
- The E_{AVA} of GaN Fin-JFET is comparable to SiC devices.
- Under 70% of critical, GaN Fin-JFET survived over 1k cycles of repetitive avalanche test
- GaN Fin-JFETs show failure-to-open nature in both repetitive avalanche test and singleevent short circuit test, which is highly desirable for system applications.
- GaN Fin-JFET shows great avalanche & short circuit robustness.

Thank you! rzzhang@vt.edu, yhzhang@vt.edu